PROPERTIES OF CAST MULTICOMPONENT HIGH-ENTROPY BORON-DOPED ALLOYS.
DOI: 10.54647/materials430274 24 Downloads 1588 Views
Author(s)
Abstract
The physical, mechanical and tribological properties of cast multicomponent high-entropy boron-doped alloys obtained by vacuum-arc melting are studied. It was found that cast multicomponent high-entropy alloys doped with boron have a hardness of 20-30 GPа and a modulus of elasticity of 400-600 GPа. Alloying high-entropy alloys with a Borut lab6 mixture increases the hardness to 35-45 GPа and the modulus of elasticity to 700-780 GPа. The possibility of setting the coefficient of conversion of hardness to the yield strength knowing the elastic modulus of the material is shown.Alloying high-entropy alloys with boron significantly improves their heat resistance. Thus, the high-entropy tihfnbtamo alloy with the addition of 2% boron reduces the hardness from 13.0 GPа at 20 oC to 8.5 GPа at 900 oC.
Keywords
Keywords: high-entropy alloys, boron, hardness, elastic modulus, elastic deformation, elastic limit, conversion coefficient, friction
Cite this paper
V. F. Gorban, M. O. Krapivka,
PROPERTIES OF CAST MULTICOMPONENT HIGH-ENTROPY BORON-DOPED ALLOYS.
, SCIREA Journal of Materials.
Volume 9, Issue 1, February 2024 | PP. 13-21.
10.54647/materials430274
References
[ 1 ] | RANGANATHAN S. Alloyed pleasures: multimetallic cocktails. Current Sci, 2003, 85, 1404–1406 |
[ 2 ] | CANTOR, B., CHANG, I., KNIGHT, P. & VINCENT, A. Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering, 2004, A 375, 213-218. |
[ 3 ] | YEH J.W. Recent progress in high-entropy alloys, Ann Chim Sci Mater, 2006, 31, 633–648 |
[ 4 ] | Gorban’, V.F. Andreev, A.A, Shaginyan, L.R. Firstov, S.A., Karpets, M.V., Danilenko, N.I High-Entropy Coatings —Structure and Properties. J. of Superhard Materials.2018.V.40, P. 88-101 |
[ 5 ] | B.S. MURTY, YEH JIEN-WEI, RANGANATHAN S. BHATTACHARJEE High-Entropy Alloys. Second Edition. 2019, 363р. Elsevier Inc. |
[ 6 ] | SA Firstov, VF Gorban, NI Danilenko, MV Karpets, AA Andreev Thermal stability of superhard nitride coatings based on multicomponent high-entropy alloy of the Ti–V–Zr–Nb–Hf system. Poroshk. Metallurg, 2014, V.52, N 9-10, P. 560-566 |
[ 7 ] | Gorban’, V.F., Andreyev, A.A, Kartmazov, G.N., Chikryzhov, A.M., Karpets, M.V., Dolomanov, A.V.,Ostroverkh, A.A., Kantsyr, E.V. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy J. of Superhard Materials. 2017.V.39, P. 166-171 |
[ 8 ] | E. Castle, T.Csanádi, S. Grasso, and et al, "Processing and properties of high-entropy ultra-high temperature carbides,"Sci. Rep.,8, No. 1, 8609 (2018);doi:10.1038/s41598-018-26827-1. |
[ 9 ] | ZHOU, J. J. ZHANGA, F. ZHANGA, B. et.al. High-entropy carbide: a novel class of multicomponent ceramics. J. Ceramics Int. 2018, 44, 22014–22018. |
[ 10 ] | X. WEI, J. LIU, F. LI et al, "High entropy carbide ceramics from different starting materials J, Eur. Ceram. Soc., 2019, 39, 2989–2994;doi:10.1016/j.jeurceramsoc.2019.04.006. |
[ 11 ] | HUIMIN XIANG, YAN XING, FU-ZHI DAI et al. High-entropy ceramics: Present status, challenges, and a look forward. J, Advanced Ceramics 2021, 10, 324-332 https://doi.org/10.1007/s40145-021-0477-y |
[ 12 ] | V.F. Horban,, M.O. Krapivka, S.O. Firstov, O.M. Myslyvchenko, I.M. Zakiev, and A.O. Samelyuk Mechanical and tribological properties of cast monocarbides and multicomponent high-entropy carbides. Powder Metallurgy and Metal Ceramics, 2023. V. 62, DOI 10.1007/s11106-023-00369-2 |
[ 13 ] | J. Dusza, T. Csanádi, D. Medved, R. Sedlák, M. Vojtko, M. Ivor, and P. Šajgalík, “Nanoindentation and tribology of a (Hf–Ta–Zr–Nb–Ti)C high-entropy carbide,” J. Eur. Ceram. Soc., 2020. 41, No. 11, 5417–5426 |
[ 14 ] | K. Wang, L. Chen, C. Xu, W. Zhang, Z. Liu, Y. Wang, and Y. Zhou, “Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic,” J. Mater. Sci. Technol., 39, 99–105 (2020) |
[ 15 ] | Myslyvchenko O. M., Gorban’ V. F., Samelyuk A. V., and Krapivka M. O. The Influence of boron on the structure and physicomechanical properties of high-entropy Ti30Zr25Hf15Nb20Ta10 alloy J. Materials Science 2022. V. 58, Р.422-426. |
[ 16 ] | K. Lu, J.X. Liu, X.F. Wei, W. Bao, Y. Wu, F. Li, and G.J. Zhang, “Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase,” J. Eur. Ceram. Soc., 40, No. 5, 1839–1847 (2020) |
[ 17 ] | Ji-Xuan Liu, Xiao-Qin Shen, Yue Wu Zhang Guo Jun Mechanical properties of hot-pressed high-entropy diboride-based ceramics May 2020 Journal of Advanced Ceramics 9(4) DOI: 10.1007/s40145-020-0383-8 |
[ 18 ] | Storr, B.; Amezaga, C.;Moore, L.; Iwan, S.; Vohra, Y.K.; Chen,C.-C.; Catledge, S.A. High Entropy Borides Synthesized by the Thermal Reduction of Metal Oxides in Microwave Plasma. Materials 2023,16, 4475. https://doi. 10.3390/ma16124475 |
[ 19 ] | Xiao-Qin SHEN, Yue WU, Fei LI,Yongcheng LIANG, Guo-Jun ZHANG, Ji-Xuan LIU Mechanical properties of hot-pressed high-entropy diboride-based ceramics. J. of Advanced Ceramics. 2020, 9(3): 0–0 ISSN 2226-4108 https://doi.org/10.1007/ s40145 -020-0383-8 |
[ 20 ] | Gorban, V.F., Pechkovskii, É.P.Instrumented indentation for determining the structural state of materials. Powder Metallurgy and Metal Ceramics 2010, 49(7-8), с. 424-429 |
[ 21 ] | Miedema A. R., de Chatel P. F., and de Boer F. R. Cohesion in alloys – fundamentals of a semi-empirical model // Physica B+C. – 1980. – 100, № 1. – P. 1–28. |
[ 22 ] | Electronic resource. - Access mode: http://www.entall.imim.pl/calculator/ |
[ 23 ] | V.A. Mechnik, N.A. Bondarenko, V.M. Kolodnitskyi, V.I. Zakiev, I.M. Zakiev, S.N. Dub, and N.O. Kuzin, “Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods,” Tribol. Ind., 41, No. 2, 188–198 (2019) |
[ 24 ] | Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, J. Mater. Sci. Technol. 34 (2018) 349-354. |
[ 25 ] | V. F. Gorban, S. O. Firstov, M. O. Krapivka, A. V. Samelyuk, and D. V. Kurylenko Influence of various factors on the properties of solid-soluble high-entropy alloys based on BCC and FCC phases// Materials Science,–2022.– 58.–Р. 127-131. DOI 10.1007/s11003-022-00641-7 |
[ 26 ] | Horban V.F. Dising of solid solution high entropy alloys with BCC of FCC crystal structures. J. of Materials Engineering – 2024. –52(1). – P.16-26. |
[ 27 ] | Li Li, Qihong Fang, Jia Li, Bin Liu, Yong Liu, and Peter K. Liaw Lattice-distortion dependent yield strength in high entropy alloys. Mater. Sci. and Eng.: A. – 2020. – 784. – Article number 139323. DOI: 10.1016/j.msea.2020.139323 |
[ 28 ] | Firstov, S.A., Gorban’, V.F., Krapivka, N.A., Pechkovskii, E.P., Danilenko, N.I., Karpets, M.V Mechanical properties of cast multicomponent alloys at high temperatures. Modern Problems of the Physical Materials Science, 2008. 17, P. 126–139,. |
[ 29 ] | Jamieson Brechtl, Shuying Chen, Chanho Lee, Yunzhu Shi, Rui Feng, Xie Xie, and Peter K. Liaw A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys Metals 2020, 10, 1101; doi:10.3390/met10081101 |
[ 30 ] | S. V. Divinski, A. V. Pokoev, N. Esakkiraja, A. Paul, A mystery of" sluggish difusion" in high-entropy alloys: the truth or a myth?, in: Difusion Foundations, Vol. 17, Trans Tech Publ, 2018, pp. 69-104. |
[ 31 ] | M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Bulk tracer difusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-22 |