Ink-based fabrication of microwave passive devices: a review

Volume 9, Issue 2, April 2024     |     PP. 56-77      |     PDF (2636 K)    |     Pub. Date: November 25, 2024
DOI: 10.54647/dee470554    24 Downloads     1233 Views  

Author(s)

Isabelle Huynen, Université catholique de Louvain (UCLouvain), ICTEAM Institute, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium

Abstract
Since the last decade inkjet printing (IJP) has gained much interest in the electronics field, due to its ease of fabrication and low cost, since it does not require mask fabrication and can use cheap substrates like paper, adding the advantage of recyclability. In this manuscript, a review of IJP of microwave passive devices is presented. The various inks (dielectric or conductive), substrates (rigid or flexible), and printing techniques are first presented, with a focus on IJP. Next various passive devices are discussed. They include couplers, resonators, sensors, filters, antennas, and absorbers. For each category, the geometry, dimensions, and performances are discussed. Whenever possible, green aspects are addressed.

Keywords
2D printing; inkjet; silver; gold; carbon nanotube, graphene; dielectric ink; coupler; filter; antenna; absorber; resonator; sensor; microwaves.

Cite this paper
Isabelle Huynen, Ink-based fabrication of microwave passive devices: a review , SCIREA Journal of Electrical Engineering. Volume 9, Issue 2, April 2024 | PP. 56-77. 10.54647/dee470554

References

[ 1 ] El Hajjaji C; Delhote N; Verdeyme S; Piechowiak. Optimization of the conductivity of microwave components printed by inkjet and aerosol jet on polymeric substrates by IPL and laser sintering. International Journal of Microwave and Wireless Technologies 2021, 13, 652 – 662.
[ 2 ] Gugliandolo G; Alimenti A; Torokhtii K; Pompeo N; Campobello G; Crupi G; Silva E; Donato N. Design and test of an inkjet- printed microwave interdigital capacitor on flexible Kapton substrate. In Proceedings of 23rd International Wor kshop on ADC and DAC Modelling and Testing IMEKO TC-4 2022, Brescia, Italy / September 12-14, 2022, 346 - 351
[ 3 ] McKerricher G; Vaseem M; Shamim A. Fully inkjet-printed microwave passive electronics. Microsystems & Nanoengineering 2017, 3, 16075.
[ 4 ] Blanco-Angulo C.; Martinez-Lozano A; Arias-Rodriguez J.; Rodriguez-Martinez A; Vincente-Samper JM; Sabater-Navaro JM; Avila-Navar E. Low-Cost Direct-Writing of Silver-Based Ink for Planar Microwave Circuits up to 10 GHz. IEEE Access 2023, 11, 4010 – 4022.
[ 5 ] He X; Tentzeris MM. Inkjet Printed Lange Coupler for Antenna Systems. In Proceedings of 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 2019, Atlanta, GA, USA / 07-12 July 2019, 91 - 92.
[ 6 ] Kim S; Aubert H; Tentzeris M. An Inkjet-printed Flexible Broadband Coupler in Substrate Integrated Waveguide (SIW) Technology for Sensing, RFID and Communication Applications. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa USA, 01-06 June 2014, 4 p:
[ 7 ] Godlinski D; Zichner R; Zöllmer V; Baumann RR. Printing technologies for the manufacturing of passive microwave components: antennas IET Microw. Antennas Propag. 2017, 11, 2010 - 2015.
[ 8 ] Kim S; Cook B; Le T; Cooper J; Lee H; Lakafosis V; Vyas R; Moro R; Bozzi M; Georgiadis A; Collado A; Tentzeris MM. Inkjet-printed antennas, sensors and circuits on paper substrate IET Microw. Antennas Propag. 2013, 7, 858 – 868.
[ 9 ] Al-Naiemy Y; Elwi TA; Khaleel HR; Al-Rizzo H. A Systematic Approach for the Design, Fabrication, and Testing of Microstrip Antennas Using Inkjet Printing Technology. International Scholarly Research Network 2023, 2012, 132465.1-11.
[ 10 ] Kim S. Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing ISensors 2020, 9, 1636.1-22. L
[ 11 ] Azucena O; JKubbyJ; Scarbrough D; Goldsmith C. Inkjet Printing of Passive Microwave Circuitry. In Proceedings of the 2008 IEEE MTT-S International Microwave Symposium Atlanta, GA, USA / 15-20 June 2008, 1076 - 1078.
[ 12 ] Rosker ES; Sandhu R; Hester J; Goorsky M.S; Tice J. Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities IInternational Journal of Antennas and Propagation 2018, 2018, 19 p.
[ 13 ] Friederich F; Kohler C; SazegarM; Nikfalazar M; Jakoby R; Binder J.R; Bauer W. In Proceedings of the IMAPS/ACerS 9th CICMT Conference (2013) Orlando, Florida USA/ April 23-25 , 2013, 000232 - 000239.
[ 14 ] Zhang H ; Lan Y; Qiu S; .Min S, Jang H, Jeongpil Park J; Song S; Ma Z. Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Adv. Mater. Technol. 2021, 6, 2000759
[ 15 ] Singh M, Hanna M. Haverinen HM, Dhagat P, E. Jabbour GE. Inkjet Printing—Process and Its Applications. Adv. Mater. 2010, 22, 673–685.
[ 16 ] Mack Grubb P, Subbaraman P.A.; Park S.; Akinwande D.; Chen R.T. Inkjet Printing of High Performance Transistors with Micron Order Chemically Set Gaps. Scientific Reports 2017, 7, 1202.1- 7.
[ 17 ] Kamyshny A.; Steinke J. ;Magdassi S. Metal-based Inkjet Inks for Printed Electronics The Open Applied Physics Journal 2011, 4, 19-36.
[ 18 ] Nabatian D.J.; Rosenwald C.; F. Barlow F.; Kabir H. A Study of Microwave Behavior of a Thin-Print Gold Ink. In Proceedings of the 2002 International Symposium on Microelectronics: September 4-6, 2002, Colorado Convention Center, Denver, USA.
[ 19 ] Ohlund T.; Schuppert A.; Andres B.; Andersson H.; Forsberg S.; Schmidt W.; Hans-Erik Nilsson,H.E.: Andersson M.; Renyun Zhanga R.; Olina H. Assisted sintering of silver nanoparticle inkjet ink on paper with active coatings RSC Adv. 2015, 5, 64841.1 - 9.
[ 20 ] Li R-Z.; Hu A.; Bridges D.; Zhang T.; Oakes K.D.; Peng R.; Uma Tumuluri U.; Wue Z.; Feng Z. Robust Ag nanoplate ink for flexible electronics packaging Nanoscale 2015, 7, 7368-7377.
[ 21 ] Khondoker M.A.H.; Mun S.C.; Kim J. Synthesis and characterization of conductive silver ink for electrode printing on cellulose film Applied Physics A. 2013, 112, 411 - 418.
[ 22 ] Rao V.K. Abhinav K V.,. Karthik P; Prakash Singh S. Conductive silver inks and their applications in printed and flexible electronics RSC Adv. 2015, 5, 77760. - 77790.
[ 23 ] Li R.Z.; Hu A.; Zhang T.; Oakes K.D.; Direct Writing on Paper of Foldable Capacitive Touch Pads with Silver Nanowire Inks Appl. Mater. Interfaces 2014, 6, 21721 – 21729.
[ 24 ] Bjorninen T.; Merilampi S.; Ukkonen L.; Ruuskanen P. s L. Sydanheimo L.;. Performance comparison of silver ink and copper conductors for microwave applications IET Microw. Antennas Propag. 2010, 4, 1224–1231.
[ 25 ] Abhinav K V.; Rao V.K.; P. S. Karthika P.S.; Prakash Singh S. Copper conductive inks: synthesis and utilization in flexible electronics RSC Adv. 2015, 5, 63985 - 64030.
[ 26 ] Tortorich B.P.; Choi J-W. Inkjet Printing of Carbon Nanotubes Nanomaterials 2013, 3, 453 - 468.
[ 27 ] Wei T.; Ruan J.; Fan Z.; Luo G.; Wei F. Preparation of a carbon nanotube film by ink-jet printing Carbon 2007, 45, 2692 – 2716.
[ 28 ] Loffredo F.; , De Girolamo Del Mauroa A.; Burrasca G.; V. La Ferrara V.; Quercia L. Ink-jet printing technique in polymer/carbon black sensing device fabrication Sensors and Actuators B 2009, 143, 421 – 429.
[ 29 ] Huang X.; Leng T.; Chang K.H.; Chen J.C.; Novoselov K.S.; Hu Z. 2D Mater. 2007, 3 025021.
[ 30 ] Giardi R.; Porro S.; Chiolerio A.; Celasco E.; Sangermano M. Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites Carbon J Mater Sci, 2013, 48, 1249–1255.
[ 31 ] Torrisi F. et al. Inkjet-Printed Graphene Electronics. ACS Nano 2007, 6 2992–3006.
[ 32 ] Secor E.B.; Prabhumirashi P.L.; Puntambekar K.; Geier M.L.; Hersan M.C. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. J. Phys. Chem. Lett. 2013 4 1347
[ 33 ] Perelaer J.; Smith P.J.; Mager D.; Soltman D.; Volkman S.K.; Subramanian V.; Korvinkdf J.G.; Schubert U.S. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010, 20 8446–8453.
[ 34 ] Jaiswar R.; · F. Mederos-Henry F.; Hermans S.; Raskin J.P.; Huynen I. Inkjet-printed Frequency Selective Surfaces based on carbon nanotubes for ultra-wideband thin microwave absorbers. J Mater Sci: Mater Electron 2020, 31 2190–2201.
[ 35 ] Jaiswar R.; · F. Mederos-Henry F.; Dupont V.; · Hermans S.; Raskin J.P.; Huynen I. A ultra-wideband thin microwave absorber using inkjet-printed frequency-selective surfaces combining carbon nanotubes and magnetic nanoparticles. Applied Physics A 2019, 479 ) 125 : 473.
[ 36 ] Oueriemi I.; Raskin J.P.; Choubani F.; HuynenI. Wideband non-linear characteristics of random multi-walled carbon nanotube networks. Microwave and Optical Technology Letters 2013, 55 2648 – 2652.
[ 37 ] De Paolis R.; Pacchini S.; Coccetti F.; Monti G.; Tarricone L.; Tentzeris M.M.; Plana R. Circuit Model of Carbon-Nanotube Inks for Microelectronic and Microwave Tunable Devices. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium Baltimore, USA 05-10 June 2011
[ 38 ] Momeni-Nasab M.:, Bidoki S.M.; Hadizadeh M. Ink-jet printed metamaterial microwave absorber using reactive inks. Int. J. Electron. Commun. 2020, 123 153259.1 - 9
[ 39 ] Smith P.J.; Morrin A. Reactive inkjet printing. J. Mater. Chem. 2012, 22 10965 - 10970.
[ 40 ] Kheawhom S.; Foithong K. Comparison of Reactive Inkjet Printing and Reactive Sintering to Fabricate Metal Conductive Patterns. Japanese Journal of Applied Physics 2013, 52 05DB14.
[ 41 ] Kim H. et al. Barium titanate-enhanced hexagonal boron nitride inks for printable high-performance dielectrics. Nanotechnology 2022, 32 2157042.1 - 8.
[ 42 ] Mohapatra A.; Tuli S.K.; , K-Y.; Tomoko Fujiwara T.; Hewitt Jr R.W.; Frank Andrasik F.; Morshed B. Inkjet Printed Parallel Plate Capacitors Using PVP Polymer Dielectric Ink on Flexible Polyimide Substrates. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Hawaii Honolulu USA/ 18-21 July 2018, 000232 - 000239.
[ 43 ] Piro Y.; Areias, C.; Luce A.; Michael M.; Biswas P.; Ranasingha O.; Reuther J.F.; Trulli S.; Akyurtlu A. Low-Loss Dielectric Ink for Printed Radio Frequency and Microwave Devices. CS Appl. Mater. Interfaces 2023, 15
[ 44 ] Goulas A.: et al. Direct ink writing of bismuth molybdate microwave dielectric ceramics. Ceramics International 2021, 47 ) 7625 –7631.
[ 45 ] Haghzadeh M.; Armiento C.; Akyurtlu A. Fully Printed Varactors and Phase Shifters Based on a BST/Polymer Ink for Tunable Microwave Applications. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS) San Francisco, USA/ 22 - 27 May 2016.
[ 46 ] Eshkeiti M.; et al. Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates. IEEE Trans. Components, Packaging and Manufacturing Techn. 2015, 5 ) 415 - 421.
[ 47 ] Ali Shah M.; Lee D.G.; Lee B-Y.; Hur S. Classifications and Applications of Inkjet Printing Technology: A Review. IEEE Access 2021, 9 140077 – 140102.
[ 48 ] Serpelloni M.; Cantù E.:, Michela Borghetti M.; Sardini E. Printed Smart Devices on Cellulose-Based Materials by means of Aerosol-Jet Printing and Photonic Curing. Sensorsl 2020, 20 841.1-18.
[ 49 ] Lessing J.; , Ana C. Glavan A.C.; , S. Brett Walker B.:, Christoph Keplinger C.; Lewis J.A.; Whitesides G.M. Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “R F Paper” for Paper-Based Electronics and MEMS. Advanced Mater. 2014, 26 4677–4682
[ 50 ] Konstas Z.; Rida A.; Vyas R.; Katsibas K.; Uzunoglu N.;Tentzeris M.M. A Novel “Green” Inkjet-Printed Z-Shaped Monopole Antenna for RFID Applications. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany/ 23-27 March 2009.
[ 51 ] L.i Y.; Zhang R.; Staiculescu D.; Wong C.P.; Tentzeris M.M. A Novel Conformal RFID-Enabled Module Utilizing Inkjet-Printed Antennas and Carbon Nanotubes for Gas-Detection Applications. IEEE Ant. Wireless Propag. Lett. 2009, 8 651 - 653.
[ 52 ] Kao H-L.;, Tsai Y-C.: Chang L.C.; Chiu H.C. Microwave Resonators Embedded With Carbon Nanotubes for Real-Time Gas Sensing. IEEE Sensors Journall 2024, 24 4325-4334.
[ 53 ] Sanchez-Duenas L. et al. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks.Materials 2023, 16 22 p.
[ 54 ] Hwang Y. et al. Plant-Based Substrate Materials for Flexible Green Electronics. Advanced Mater. Technology 2022, 7 2200446.1 - 10.
[ 55 ] Scandurra G.; Arena A.; Ciofi C. A Brief Review on Flexible Electronics for IoT: Solutions for Sustainability and New Perspectives for Designers. Sensors 2023, 23 5264.1-31.
[ 56 ] Jürgensen N.; Pietsch M.; Hai X.; Schlisske S.; Hernandez-G. Green ink formulation for inkjet printed transparent electrodes in OLEDs on biodegradable substrates. Synthetic Metals 2021, 202 116930.1 - 7.
[ 57 ] Batet D.; VilasecaF.; Ramon E.; Esquivel J.P.; Gabriel G. Experimental overview for green printed electronics: inks, substrates, and printing techniques. Flex. Print. Electron. 2023, 8 024001.1-19.
[ 58 ] Al Shboul A..; Ketabi M.; Izquierdo R. Conductive Green Graphene inks for Printed Electronics. In Proceedings of the 2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC), Anchorage, USA/ 12-1R December 2021.
[ 59 ] Franco M. et al. Environmentally Friendly Conductive Screen-Printable Inks Based on N-Doped Graphene and Polyvinylpyrroli- done. Adv. Eng. Mater. 2021, 2101258.1-11.
[ 60 ] Hussein R.N.; Schlingman K.; Noade C.; Carmichael S.; Carmichael TB. Shellac-paper composite as a green substrate for printed electronics. Flex. Print. Electron. 2022, 7 045007.1-13.
[ 61 ] Li Y.; Misra M.; Gregori S. Printing Green Nanomaterials for Organic Electronics. IEEE Trans. Comp. Packaging and Manufacturing Tech. 2018, 8 1307 - 1316.
[ 62 ] Wiklund J.; Karakoç A.;i Palko T.; Yi gitler H.; Ruttik K.; Riku Jäntti R.; Paltakari J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. Journal of Manufacturing and Materials Processing 2021, 5 36 p.
[ 63 ] Babale S.A.; Rahim S.K.A.; Himdi M.; Lawan S.H.; F. D. Sani, F.D.; Usman A.D. Implementation of inkjet-printed 3 dB coupler with equal power division and 45 degrees output phase difference. Microwave and Optical Technology Letters 2021, 63 .1007 - 1011.
[ 64 ] Cook B.S.; Cooper J.R.; Tentzeris M.M. Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers. IEEE Microw. Wireless Comp. Lett. 2013, 23 353-355.
[ 65 ] Jasinska L..; SzostakK.; Kiliszkiewicz M.; Słobodzian P.; Malecha K. Ink-jet printed ring resonator with integrated microfluidic components. Circuit World 2020, 46 .301 – 306.
[ 66 ] Paul M.; Kühnel H.; Oberpertinger R.; Mehofer C.; Pollhammer D.; Wellenzohn M. Two-Layer Inkjet-Printed Microwave Split-Ring Resonators for Detecting Analyte Binding to the Gold Surface. Sensors 2024, 24 1688.1-13.
[ 67 ] Paul M.; Kühnel H.; Oberpertinger R.; Mehofer C.; Wellenzohn M. Inkjet-printed Split Ring Resonators for Microwave Sensor Applications on Flexible Kapton Substrate. In Proceedings of the 2023 PhotonIcs & Electromagnetics Research Symposium (PIERS), Prague, Czech Republic,/ 2 - 6 July 2023.
[ 68 ] Royo I.. , Fernández-García R.; Gil I. Microwave Resonators for Wearable Sensors Design: A Systematic Review. Sensors 2023, 23 9103.1 - 43.
[ 69 ] Tehrani B.K.; Bito J.; Cook B.S.; Tentzeris M.M. Fully inkjet-printed multilayer microstrip and T-resonator structures for the RF characterization of printable materials and interconnects. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa FL, USA/ 1-6 July 2014.
[ 70 ] Kirschenmann K.; Whites K.W.; Woessner S.M. Inkjet printed microwave frequency multilayer antennas. In Ptoceedings of the 2007 IEEE Antennas and Propagation Society International Symposium. Honolulu, USA/ 9 - 15 June 2007.
[ 71 ] Lee H.; Shaker G.; Naishadham K.; Song X.; McKinley M.; Wagner B.; Tentzeris M. Carbon-Nanotube Loaded Antenna-Based Ammonia Gas Sensor. IEEE Trans. Microwave Theory Tech. 2021, 59 2665 - 2674.
[ 72 ] Ibanez Labiano I.; Alomainy A.A. Flexible inkjet-printed graphene antenna on Kapton. Flex. Print. Electron. 2021, 6 025010.1- 8.
[ 73 ] Chauraya A.; Whittow W.G.; Vardaxoglou Y.C.; Li Y.; Torah R.; Yang K; Beeby S.; Tudor J. Inkjet Printed Dipole Antennas on Textiles for Wearable Communications IET Microwaves, Antennas Propagation 2021, 7 760 – 767.
[ 74 ] Moro R.; Kim S.; Bozzi M.; Tentzeris M. Inkjet-printed paper-based substrate-integrated waveguide (SIW) components and antennas. IET Microwaves, Antennas and Propagation 2021, 7 760 – 767.
[ 75 ] Chang X.L.;, Song Chee P.; Lim E.H. Compact conformal tattoo-polymer antenna for on-body wireless power transfer. Scientific Reports 2023, 13 9678.
[ 76 ] Orecchini G. Alimenti F.; Palazzari V.. A. Rida A.;Tentzeris M.M.; Roselli L. IET Microwaves, Antennas and Propagation 2011, 5 993 – 1001
[ 77 ] Camli B. et al. Rapid prototyping of noncontact microwave microfluidic devices for sensing applications. J. Micromech. Microeng 2021, 31 097001.1- 8.
[ 78 ] Georges J. et al. CNT-Based Inkjet-Printed RF Gas Sensor: Modification of Substrate Properties during the Fabrication Process. Sensors 2019, 31 1768.1- 13.
[ 79 ] Tirkey M.M; Gupta N. Inkjet-printed broadband FSS-based absorber with improved absorption characteristics. International Journal of Microwave and Wireless Technologies 2023, 1- 9.
[ 80 ] Zabri Z.N.; Cahill R.; Conway G.; McGuigan N.; Zelenchuk D. ; Dickie R. Manufacturable Ultra-Thin Resistive FSS for Challenging EM Mobile Environments. In 2007 Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018). London, UK/ 9- 13 April 2018.
[ 81 ] Yoo M.; Kim H.K.: Kim S.; Tentzeris M.; Lim S. Silver Nanoparticle-Based Inkjet-Printed Metamaterial Absorber on Flexible Paper. IEEE Ant. Wireless Propag. Lett. 2013, 14 1718 - 1722.
[ 82 ] Jaiswar R. Wideband microwave absorber structures based on carbonaceous nanomaterials: From modelling to experimental Characterisation. PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 23 April 2019.
[ 83 ] Tirkey M.M; Gupta N. Broadband Polarization-Insensitive Inkjet-Printed Conformal Metamaterial Absorber. IEEE Trans. Electro- magn. Compat. 2021, 63 1829 - 1837.
[ 84 ] Machado G.G.; Cahill R.; Fusco V.; Conway G. Design and fabrication of inkjet printed ultrathin FSS based microwave absorbers. In Proceedings of the Loughborough Antennas and Propagation Conference (LAPC 2018). Loughborough, UK/ 12 - 13 November 2018.
[ 85 ] Han J.S. et al. 29760. Ultrawide meta-film replication process for the mass production of a flexible microwave absorbing meta-surface. Optics Express 2022, 30 29761.1 - 12.
[ 86 ] Han W.; Q-Han Park Q.A.Broadband absorber with dispersive metamaterials. Nanophotonics 2023, 12 2443–2449.
[ 87 ] Hester J.G. et. al. Inkjet printing and additive manufacturing technologies (AMT) are introduced for the fabrication of flexible RF/microwave electronics and sensors.. Proceedings of the IEEE 2015, 103 584–606.
[ 88 ] Njogu P.M.; Sanz-Izquerdo B.; Jun S.Y; Kalman G.; Gao S.; Malas A.; Gibbons G.J. Evaluation of Planar Inkjet-Printed Antennas on a Low-Cost Origami Flapping Robot. IEEE Access 2020, 8 164103 - 16425.
[ 89 ] Shen Y.; Pang Y.; Wang J.; Ma H.; Pei Z.; Qu S. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. J. Phys. D: Appl. Phys. 2015, 48 ) 445008.1 - 7.
[ 90 ] Biswas A.; Zekios C.L.; Ynchausti C.; Howell L.L.; Magleby S.P.; Georgakopoulos S.V. An ultra-wideband origami microwave absorber. Scientific Reports 2022, 12 13449.1 - 16.
[ 91 ] Zhu Z.; Yongfeng Y.; Qin Z.; Jiang, L.; Wang W.; Chen H.; Wang J.; Zhen L.; Qu S. Miura-ori based reconfigurable multilayer absorber for high-efficiency wide-angle absorption. Optics Express 2024, 32 24092.1 - 16.