Temperature and magnetic field dependence of the specific heat of van der Waals gapped ferromagnet CrI3

Volume 5, Issue 6, December 2020     |     PP. 141-162      |     PDF (1028 K)    |     Pub. Date: December 3, 2020
DOI:    213 Downloads     6099 Views  

Author(s)

K. Spurgeon, Physics Department, Wright State University, Dayton, Ohio 45435, USA
G. Kozlowski, Physics Department, Wright State University, Dayton, Ohio 45435, USA;AFRL, Wright Patterson AFB, Dayton, Ohio 45433, USA;UES Inc., 4401 Dayton Xenia Rd, Dayton, Ohio 45432, USA
M.A. Susner, AFRL, Wright Patterson AFB, Dayton, Ohio 45433, USA; UES Inc., 4401 Dayton Xenia Rd, Dayton, Ohio 45432, USA
Z. Turgut, AFRL, Wright Patterson AFB, Dayton, Ohio 45433, USA
J. Boeckl, AFRL, Wright Patterson AFB, Dayton, Ohio 45433, USA

Abstract
Chromium (III) iodide (CrI3) is a layered 2-D semiconducting magnet in which strong ferromagnetic order is present within individual layers with possibly weak magnetic coupling between them. In this report we study the specific heat of this interesting compound as functions of both temperature and magnetic field. The layered structure of this material suggests that the specific heat may be theoretically described by either the two- or three-dimensional models. Here we evaluate each model in terms of comparison to experimental data taken on single crystals. It appears that the specific heat capacity of CrI3 is well described by the combination of a structural (phonon) 3-D contribution and a 2-D magnetic contribution. Spin wave theory applied to describe 2-D magnetic contribution to specific heat capacity in the low temperature region shows the presence of a very strong anisotropy which is required to keep magnetic moments in an off-plane orientation.

Keywords
2-D semiconducting magnet, heat capacity

Cite this paper
K. Spurgeon, G. Kozlowski, M.A. Susner, Z. Turgut, J. Boeckl, Temperature and magnetic field dependence of the specific heat of van der Waals gapped ferromagnet CrI3 , SCIREA Journal of Electrical Engineering. Volume 5, Issue 6, December 2020 | PP. 141-162.

References

[ 1 ] Y. Liu, L. Wu, X. Tong, J. Li, J. Tao, Y. Zhu, and C. Petrovic, Scientific Reports, 9, 13599 (2019).
[ 2 ] C. W. Liu, M. Östling, and J. B. Hannon, MRS Bull., 39, 658 (2014).
[ 3 ] M. C. Lemme, L. J. Li, T. Palacios, and F. Schwierz, MRS Bull., 39, 711 (2014).
[ 4 ] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chemistry of Materials, 27, 612 (2015). https://doi.org/10.1021/cm504242t.
[ 5 ] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature, 546, 270 (2017).
[ 6 ] C. Felser, G. H. Fecher, and B. Balke, Angew. Chem., Int. Ed., 46, 668 (2007).
[ 7 ] L. L. Handy and N. W. Gregory, J. Am. Chem. Soc., 74, 891 (1952).
[ 8 ] B. Morosin and A. J. Narath, Chem. Phys., 40, 1958 (1964).
[ 9 ] I. Pollini, Solid State Commun., 106, 549 (1998).
[ 10 ] W. N. J. Hansen, Appl. Phys., 30, 304S (1959).
[ 11 ] W. N. J. Hansen and M. J. Griffel, Chem. Phys., 30, 913 (1959).
[ 12 ] J. F. Dillon, Jr. and C. E. J. Olson, Appl. Phys., 36, 1259 (1965).
[ 13 ] M. O. Kostryukova and L. V. Luk'yanova, JETP Letters, 17, 54 (1973).
[ 14 ] J. L. Lado and J. Fernández-Rossier, 2D Materials, 4, 035002 (2017). https://doi.org/10.1088/2053-1583/aa75ed.
[ 15 ] G. T. Lin, X. Luo, F. C. Chen, J. Yan, J. J. Gao, Y. Sun, W. Tong, P. Tong, W. J. Lu, Z. G. Sheng, W. H .Song, X. B. Zhu, and Y.P. Sun, Applied Physics Letters, 112, 072405 (2018). https://doi.org/10.1063/1.5019286.
[ 16 ] A. Arrott and J. E. Noakes, Phys. Rev. Lett., 19, 786 (1967).
[ 17 ] J. S. Kouvel and M. E. Fisher, Phys. Rev., 136, A1626 (1964).
[ 18 ] A. Oleaga, A. Salazar, D. Prabhakaran, J. G. Cheng, and J. S. Zhou, Phys. Rev., B 85, 184425 (2012).
[ 19 ] J. Liu, Q. Sun, Y. Kawazoe, and P. Jena, Phys. Chem. Chem. Phys., 18, 8777 (2016).
[ 20 ] W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, J. Mater. Chem. C 3, 12457 (2015).
[ 21 ] M. A. McGuire, G. Clark, S. Kc, W. M. Chance, G. E. Jellison, V. R. Cooper, X. Xu, and B. C. Sales, Phys. Rev. Mater., 1, 014001 (2017).
[ 22 ] J. J. F. Dillon, J. Phys. Soc. Jpn., 19, 1662 (1964).
[ 23 ] D. Shcherbakov, P. Stepanov, D. Weber,Y. Wang, J. Hu, Y. Zhu, K. Watanabe, T. Taniguchi, Z. Mao, W. Windl, J. Goldberger, M. Bockrath, and C. N. Lau, Nano Letters, 18, 4214 (2018).
[ 24 ] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956) p.435.
[ 25 ] J. S. Galsin, Solid State Physics: An Introduction to Theory (Academic Press, an imprint of Elsevier, London, 2019) p.160.
[ 26 ] A. Narath, Physical Review, 131, 1929 (1963). https://doi.org/10.1103/PhysRev.131.1929.
[ 27 ] I. Grosu and M. Crisan, Journal of Superconductivity and Novel Magnetism, 33, 1073 (2019). https://doi.org/10.1007/s10948-019-05320-4.
[ 28 ] G. Garton, M. J. M. Leask, W. P. Wolf, and A. F. G. Wyatt, Journal of Applied Physics, 34, 1083 (1963).
[ 29 ] L. Chen, J. H. Chung, B. Gao, T. Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, Physical Review X, 8, 041028 (2018). https://doi.org/10.1103/PhysRevX.8.041028.
[ 30 ] V. M. Bermudez and D. S. McClure, Journal of Physics and Chemistry of Solids, 40, 129 (1979). https://doi.org/10.1016/0022-3697(79)90030-1.
[ 31 ] Y. Liu and C. Petrovic, Physical Review B, 97, 174418 (2018). https://doi.org/10.1103/PhysRevB.97.174418.
[ 32 ] M. O. Kostryukova, JETP Letters, 8, 141 (1968).
[ 33 ] W. Pepperhoff and M. Acet, Constitution and Magnetism of Iron and its Alloys (Springer-Verlag, Berlin, Heidelberg, New York, 2015) p.60.
[ 34 ] B. Rogers, J. Adams, and S. Pennathur, Nanotechnology. Understanding Small Systems (CRC Press, Taylor & Francis Group, Boca Raton, 2001) p.251.