Advanced Battery Applications of Thin Films
DOI: 329 Downloads 7811 Views
Author(s)
Abstract
Increasing demand of the renewable and clean energy sources and the rapid depletion of fossil resources have been increased the interest in different and new alternative energy production and energy storage systems. Among the electrochemical energy storage systems, next-generation thin film batteries are so attractive because of their long cycle life, stability, high capacity, portability and decreasing prices. The integration of solid parts as electrode or electrolyte in Li-based batteries brings to safety that’s why causes no leakage or explosion and prevents thermal runaway. The current studies are intended to reduce the difference between theoretical and practical specific energy densities of these batteries. It can be realized that using micron (less than 5 μm) or nano thickness microbatteries in the practical applications with moderating the battery weight. Thin film reduces diffusion length of electrons/Li ions and Li dendrite formation so expected rate performance is obtained. In this review, thin film batteries (TFBs) were studied in detail. Especially, 3D microbatteries were investigated depending on their flexibility or printable. Additionally, their performance as electro-active components was investigated compared to their traditional counterparts. It is also planned to be a guide for inspired similar studies in the future direction.
Keywords
Li-ion battery, 3D microbattery, electrolyte, electrode, thin film
Cite this paper
Fatma Özütok,
Advanced Battery Applications of Thin Films
, SCIREA Journal of Materials.
Volume 4, Issue 1, February 2019 | PP. 14-31.
References
[ 1 ] | Manthiram A.: An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017; 3:1063-1069. DOI:10.1021/acscentsci.7b00288. |
[ 2 ] | Kumar A. Nanostructured Lithium Iron Silicate/Carbon Composites as Cathode Material for Next Generation of Lithium-ion Batteries [thesis]. Wayne State University; 2017. |
[ 3 ] | Nitta N., Wu F., Lee J.T. and Yushin G. Li-ion battery materials: present and future. Materials Today. 2015; 18:252:264. DOI: 10.1016/ j.mattod.2014.10.040. |
[ 4 ] | Fang R., Zhao S., Sun Z., Wang D., Cheng H. and Li F. More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Adv. Mat. 2017; 29: 1606823-1606847. DOI: 10.1002/adma.201606823. |
[ 5 ] | Lim H.,Lee B., Bae Y., Park H., Ko Y., Kim H.,Kim J. and Kang K. Reaction chemistry in rechargeable Li–O2 batteries. Chem.Soc. Rev. 2017;46: 2873-2888. DOI: 10.1039/c6cs00929h. |
[ 6 ] | Park J., Lee S.H., Jung H., Aurbach D. and Sun Y. Redox Mediators for Li–O2 Batteries: Status and Perspectives. Adv. Mat. 2018; 30: 1704162-1704175. DOI: 10.1002/adma.201704162. |
[ 7 ] | Kitaura H. and Zhou H. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range. Nature-Sci.Reports. 2015; 5:13271-13279. DOI: 10.1038/srep13271. |
[ 8 ] | Kerman K., Luntz A., Viswanathan V., Chiang Y. and Chen Z. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society. 2017; 164: A1731-A1744. |
[ 9 ] | Ribeiro J.F., Silva M.F., Carmo J.P., Gonçalves L.M., Silva M.M. and Correia J.H. Solid-state Thin-films Lithium Batteries for Integration in Microsystems. DOI: 10.1007/978-3-642-25414-7_20. |
[ 10 ] | https://patents.google.com/patent/US20130115507. |
[ 11 ] | Wang Z., Lee J.Z.., Xin H.L., Han L., Grillon N., Guy-Bouyssou D., Bouyssou E., Proust M. and Meng Y.S. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. Journal of Power Sources. 2016; 324: 342-348. DOI: 10.1016/j.jpowsour.2016.05.098. |
[ 12 ] | Erol S. A fibrous solid electrolyte for lithium-ion batteries. Bulgarian Chemical Communications. 2017; 49 (1): 128 – 132. |
[ 13 ] | Liu C., Cheng X. and Lao C. The Application of 3D Printing in Lithium-ion Batteries. 2017 International Conference on Mechanical Engineering and Control Automation. ISBN: 978-1-60595-449-3:245-250. |
[ 14 ] | Golodnitsky D.,Nathan M., Yufit V., Strauss E., Freedman K., Burstein L., Gladkich A. and Peled E. Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics. 2006; 177:2811–2819. |
[ 15 ] | Cai Y., Wang H., Jin J., Huang S., Yu Y, Li Y., Feng S., Su B. Hierarchically structured porous TiO2 spheres constructed by interconnected nanorods as high performance anodes for lithium ion batteries. Chemical Engineering Journal. 2015; 281:844–851. |
[ 16 ] | Roberts M., Johns P., Owen J., Brandell D., Edstrom K.,Enany G.E., Guery C., Golodnitsky D., Lacey M., Lecoeur C., Mazor H., Peled E., Perre E., Shaijumon M.M., Simon P. and Taberna P. 3D lithium ion batteries—from fundamentals to fabrication. J. Mater. Chem. 2011; 21: 9876-9882. |
[ 17 ] | Wu H., Chan G., Choi J.W., Ryu I., Yao Y. , McDowell M.T. , Lee S.W., Jackson A., Yang Y., Hu L. and Cu Y. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. NATURE NANOTECHNOLOGY. 2012; 7: 310-316. DOI: 10.1038/NNANO.2012.35. |
[ 18 ] | Kang C., Baskaran R., Hwang J., Ku B. and Choi W. Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. CARBON. 2014; 68:493-500. DOI: 0.1016/j.carbon.2013.11.026. |
[ 19 ] | Xie J. Oudenhoven J.F.M., Li D., Chen C., Eichel R. and Nottena P.H.L. High Power and High Capacity 3D-Structured TiO2 Electrodes for Lithium-Ion Microbatteries. Journal of The Electrochemical Society. 2016; 163 (10): A2385-A2389. |
[ 20 ] | Sun K. , Wei T., Ahn B.Y., Seo J.Y. , Dillon S.J. and Lewis J.A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013; 25: 4539–4543. |
[ 21 ] | Blake A.J. From 2D to 3D: on the development of flexible and conformal Li-ion batteries via additive manufacturing [thesis]. Wright State University, 2016. |
[ 22 ] | Chan C.K., Peng H., Liu G., Mcilwrath K., Zhang X.F., Huggins R.A. and Cui Y. High-performance lithium battery anodes using silicon nanowires. NATURE NANOTECHNOLOGY. 2008; 3: 31-36. DOI: 10.1038/nnano.2007.411. |
[ 23 ] | Hur J.I., Smith L.C. and Dunn B. High Areal Energy Density 3D Lithium-Ion Microbatteries. Joule. 2018; 2:1-15. |
[ 24 ] | Li J., Liang X., Liou F. and Park J. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing. Nature. 2018; 8:1846-1857. |
[ 25 ] | Ferrari S., Loveridge M., Beattie S.D., Jahn M., Dashwood R.J. and Bhagat R. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. Journal of Power Sources. 2015; 286: 25-46. |
[ 26 ] | Ren L., Xu S, Gao J., Lin Z., Chen Z., Liu B., Liang L. and Jiang L. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording. Sensors. 2018; 18-1191-1202; DOI:10.3390/s18041191. |
[ 27 ] | E M F Vieira1, J F Ribeiro1, R Sousa2, J H Correia1 and L M Goncalves. A flexible Li-ion battery with design towards electrodes electrical insulation. J. Micromech. Microeng. 2016; 26:084002 (8pp). DOI:10.1088/0960-1317/26/8/084002. |
[ 28 ] | Kang C., Baskaran R., Hwang J., Ku B. and Choi W. Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. CARBON. 2014; 68: 493-500. DOI: 0.1016/j.carbon.2013.11.026. |
[ 29 ] | Gong Y, Fu K., Xu S., Dai J., Hamann T.R., Zhang L., Hitz G.T., Fu Z., Ma Z., McOwen D.W., Han X., Hu L., Wachsman E.D. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Materials today. 2018; 8 pages. DOI: 10.1016/j.mattod.2018.01.001. |
[ 30 ] | Gaikwad A.M., Arias A.C. and Steingart D.A. Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects. Energy Technology. 2015; 3: 305-328. DOI: 10.1002/ente.201402182. |
[ 31 ] | Maiser E. Battery Packaging – Technology Review. AIP Conference Proceedings. 2014; 1597: 204-218. DOI: 10.1063/1.4878489. |
[ 32 ] | Fukuda K. and Someya T. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology. Adv. Mater. 2017;29:1602736-1602758. |
[ 33 ] | Rui X., Yan Q., Skyllas-Kazacos M., Lim T.M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources.2014; 258: 19-38. |
[ 34 ] | Choudhury N.S. and Patterson J. W. Steady‐State Chemical Potential Profiles in Solid Electrolytes.The Electrochemical Society. 1970; 117(11): 1384-1388. DOI: 10.1149/1.2407327. |
[ 35 ] | Bensalah N. and Dawood H. Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries. Journal of Material Science & Engineering. 2016; 5(4): 22 pages. DOI: 0.4172/2169-0022.1000258. |
[ 36 ] | Deng S., Xiao B., Wang B., Li X., Kaliyappan K., Zhao Y., Lushington A., Li R., Sham T., Wang B., Sun X. New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes. Nano Energy. 2017; 38:19–27. DOI: 10.1016/j.nanoen.2017.05.007. |
[ 37 ] | Lee K., Yang G.J., Kim H., Kim T., Lee S.S., Choi S., Choi S., Kim Y. Composite coating of Li2OB2O3 and carbon as multi-conductive electron/Li-ion channel on the surface of LiNi0.5Mn1.5O4 cathode. Journal of Power Sources. 2017; 365:249-256. |
[ 38 ] | Su J., Wei B., Rong J., Yin W., Ye Z., Tian X., Ren L., Cao M., Hua C. A general solution-chemistry route to the synthesis LiMPO4 (M¼Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries. Journal of Solid State Chemistry. 2011; 184: 2909–2919. |
[ 39 ] | Fujimoto D., Kuwata N., Matsuda Y., Kawamura J. and Kang F. Fabrication of solid-state thin-film batteries using LiMnPO4 thin films deposited by pulsed laser deposition. Thin Solid Films. 2015; 579: 81–88. |
[ 40 ] | Wang L., Zhang L., Lieberwirth I., Xu H. and Chen C. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochemistry Communications. 2010; 2: 52–55. |
[ 41 ] | Guo Z., Zhang D., Qiu H., Ju Y., Zhang T., Zhang L., Meng Y., Wei Y. and Chen G. Improved electrochemical properties of tavorite LiFeSO4F by surface coating with hydrophilic polydopamine via a self-polymerization process. RSC Adv., 2016; 6: 6523–6527. DOI: 10.1039/c5ra24488a. |
[ 42 ] | Fan Y., Chen X., Legut D., Zhang Q. Modeling and theoretical design of next-generation lithium metal batteries. Energy Storage Materials. 2019; 16:169–193. |
[ 43 ] | Wu F., Yuan Y., Cheng X., Bai Y.,Li Y., Wu C. and Zhang Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials. 2018;15:148–170. DOI: 10.1016/j.ensm.2018.03.024. |
[ 44 ] | Yao F. Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery [thesis] The Graduate School Sungkyunkwan University Department of Energy Science, Korea; 2013. |
[ 45 ] | Nam S.C., Lee J.M., Pukha V.E., Seo H.O.,Kim Y.D. and Lee H.J. Carbon anode thin films for lithium batteries. Current Applied Physics. 2014; 14: 1010-1015. |
[ 46 ] | Andre D., Hain H., Lamp P., Maglia F. and Stiaszny B. Future high-energy density anode materials from an automotive application perspective. J. Mater. Chem. A. 2017; 5: 17174–17198. DOI: 10.1039/c7ta03108d. |
[ 47 ] | Ma D., Cao Z. and Hu A. Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Lett. 2014; 6(4):347–358. DOI 10.1007/s40820-014-0008-2 |
[ 48 ] | Mukanova A., Nurpeissova A., Urazbayev A., Kim S., Myronov M and Bakenov Z. Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries. Electrochimica Acta. 2017; 258: 800-806. |
[ 49 ] | Lee K., Lee Y.N. and Yoon Y.S. Effect of Carbon Content on Nanocomposite Si(1-x)Cx Thin Film Anode for All-Solid-State Battery. Electrochimica Acta. 2014; 147:232-240. DOI: 10.1016/j.electacta.2014.09.110. |
[ 50 ] | Li Q., Hu S., Wang H., Wang F., Zhong X. and Wang X. Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochimica Acta. 2009; 54: 5884–5888. |
[ 51 ] | Li Q. , Chen J., Fan L., Kong X. and Lu Y. Review article: Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment. 2016;1:18-42. |
[ 52 ] | Criscuolo F. High temperature deposited LiPON electrolytes for thin film solid-state batteries [thesis]. Materials Engineering and Nanotechnology School of Industrial and Information Engineering Politecnico, 2016. |
[ 53 ] | Chan C.K., Yang T., Weller J.M. Review Article, Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries. Electrochimica Acta. 2017; 253:268–280. |
[ 54 ] | Loho C., Djenadica R., Mundt P., Clemensd O. and Hahn H.. On processing-structure-property relations and high ionic conductivity in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD. Solid State Ionics. 2017;313:32–44. |
[ 55 ] | Seo I. and Martin S.W. New Developments in Solid Electrolytes for Thin-Film Lithium Batteries. Lithium Ion Batteries – New Developments. Intechopen. 101-146. DOI: 10.5772/29132. |
[ 56 ] | Sakuda A., Hayashi A. and Tatsumisago M. Review Article Recent progress on interface formation in all-solid-state batteries. Current Opinion in Electrochemistry 2017; 6 :108–114. |
[ 57 ] | www.sigmaaldrich.com/technical-documents/articles/materials-science/atomic-layer-deposition-of-nanomaterials-for-li-ion-batteries. |
[ 58 ] | Gelb J. Imaging the 4D Microstructure Evolution of a Commercial 18650 Li-ion Battery. Application note.ZEISS. 8 pages. |
[ 59 ] | phys.org/news/2013-06-3d-tiny-batteries |
[ 60 ] | news.panasonic.com/global/press/data/2016/09/en160929-8/en160929 |